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Computational aspects of the spectral Galerkin FEM for
the Orr–Sommerfeld equation
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SUMMARY

Since Orszag’s paper [‘Accurate solution of the Orr–Sommerfeld stability equation’, J. Fluid Mech., 50,
689–703 (1971)], most of the subsequent spectral techniques for solving the Orr–Sommerfeld equation
(OSE) employed the Tau discretization and Chebyshev polynomials. The use of the Tau discretization
appears to be accompanied by so-called spurious eigenvalues not related to the OSE and a singular
matrix B in the generalized eigenvalue problem. Starting from a variational formulation of the OSE, a
spectral discretization is performed using a Galerkin method. By adopting integrated Legendre polynomi-
als as basis functions, the boundary conditions can be satisfied exactly for any spectral order and the
non-singular matrices A and B are obtained in Ax=lBx. For plane Poiseuille flow, the stiffness and the
mass matrices are sparse with bandwidths 7 and 5 respectively, and the entries can be calculated explicitly
(thus avoiding quadrature errors) for any polynomial flow profile U. According to the convergence
results [Hancke, ‘Calculating large spectra in hydrodynamic stability: a p FEM approach to solve the
Orr–Sommerfeld equation’, Diploma Thesis, Swiss Federal Institute of Technology Zürich, Seminar for
Applied Mathematics, 1998; Hancke, Melenk and Schwab, ‘A spectral Galerkin method for hydrody-
namic stability problems’, Research Report No. 98-06, Seminar for Applied Mathematics, Swiss Federal
Institute of Technology, Zürich], no spurious eigenvalue has been found. Numerical experiments with
spectral orders up to p=600 illustrate the results. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Orr–Sommerfeld equation, hereafter referred to as OSE, occurs in hydrodynamic stability
theory [4]; it governs the stability of subsonic shear flows of viscous, Newtonian incompressible
fluids, whose velocity field u satisfies rot u=0 (thus we have a potential flow). These flows
may exist under various physical conditions, for instance, flows in a pipe or a channel, flows
of superposed immiscible fluids, wakes, jets, plumes and free-streams in general. These flows
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may be laminar or turbulent and the transition from the former to the latter is essentially the
above mentioned instability.

The general approach is to construct a laminar flow solution to the governing differential
equations and boundary conditions and to superimpose the turbulent flow as small variations
of the laminar flow. In the context of linearized modelling equations, the OSE is the equation
from which a mathematical analysis of flow instabilities starts. The task is to determine the
complex eigenvalues of the OSE, since the real part of the temporal growth rate of the
disturbances is given by ealimag t and amplified perturbations, i.e. those with limag\0, become
unbounded and make the flow unstable.

Early on, one is forced to employ numerical techniques in solving the OS eigenvalue
problems: finite difference methods (FDM) were among the first by which the discretization of
the OS eigenvalue equations were implemented. These turned out to be limited and more
advanced techniques such as the finite element and spectral methods were proposed. Omitting
any details, these techniques led to matrix eigenvalue problems with relatively fully occupied
matrices. This unfortunate property essentially prevailed irrespective of whether the Galerkin,
collocation or Tau method were used and limited the matrices to a certain size K×K, with K
being several hundreds in fortunate cases. Reliable results, however, can only be expected
under the assumption of scale resolution [3], i.e. sufficiently small Re/p2. Since in most cases of
practical interest, the Reynolds number Re is large, Re]O(104), high spectral orders, p]
O(103), have to be employed to obtain trustworthy results. (For Recrit, which indicates the
transition from laminar to turbulent flows, values of up to 40000 have been measured [5].)
With fully occupied complex matrices, its computational corroboration is an impossible task.
High spectral orders can only be implemented if the matrices are sparse and thus memory
requirements are proportional to the spectral order.

In this paper, a method is proposed that generates sparsely occupied matrices and is
therefore particularly suited to calculate large spectra at high accuracy.

1.1. Deri6ation of the OSE

We restrict our attention to the case of two-dimensional shear flows of an incompressible,
viscous, Newtonian fluid flowing between two fixed, parallel plates. The dimensionless
equations that govern the motion of the fluid are thus given by
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To investigate the instability, we first construct a laminar steady solution (U, P) to Equations
(1)–(3). Assuming the channel to be sufficiently ‘long’ (so that variations of the velocity field
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ORR–SOMMERFELD EQUATION 121

in the streamwise direction may be neglected), an arbitrary two-dimensional, steady, incom-
pressible flow field is given by U= (U(z), 0, 0), P=P(x), where U can be at most
quadratic in z for viscous flows [6].

The turbulent flow is now imposed on the basic flow U, P as a small disturbance

ũ= (ũ(x, z, t), 0, w̃(x, z, t)), p̃= p̃(x, z, t); (4)

hence, we write

u=U+o ũ, p=P+op̃, with 0Bo�1. (5)

Since rot u=0, we can define the streamfunction s=s(x, z, t) satisfying u=(s/(z, w= −
(s/(x. We introduce a small disturbance s̃(x, z, t)=f(z) eia(x−ct) to the streamfunction s,
where f is the amplitude function of s̃, a is a real wavenumber (if a were complex, spatial
instabilities could occur in addition to the time-dependent ones) and c (=l=lR+ ilI in
further applications) is the complex phase speed. Since the real part of the temporal growth
rate of s̃ is ealIt, lI determines the stability of the disturbance: if lIB0, the amplitude of
the disturbance decreases with time, hence the perturbation is stable. Letting D=(/(z,
substitution of the disturbed flow into (1)–(3), neglecting terms of order higher than o and
forming the vorticity equation leads to

iaRe(U−l)(D2−a2)f− iaReD2Uf= (D2−a2)2f. (6)

This is the Orr–Sommerfeld equation. For strictly parallel flows between fixed walls, Equa-
tion (6) is subjected to the boundary conditions

f=Df=0, z=91. (7)

Instability of two-dimensional laminar flow can now be discussed in terms of the eigenvalue
problem (6) and (7).

1.2. Numerical approaches

To obtain a discrete version of (6), an approximate, fk, to the original solution may be
written as a truncated series of appropriate basis functions Ni, i.e. fk=�i=1

k aiNi. Substitu-
tion of fk into (6) leads to a generalized matrix eigenvalue problem of the form Ax=lBx.
Depending on the choice of basis functions, Ni, different discretization schemes are ob-
tained: choosing infinitely differentiable global (with respect to the domain where the OSE
is to be solved) basis functions Ni leads to the so-called spectral methods, whereas the
choice of local basis functions is the typical feature of the finite element methods (FEM).
Gottlieb and Orszag [7] give a compact review on the theory and application of spectral
methods. Among the spectral methods, a further distinction depending on the choice of test
functions is made: the three most commonly used discretization schemes are the Galerkin,
collocation and Tau method.
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In 1971, Orszag [1] used expansions in Chebyshev polynomials and a Tau method to
transform the OSE into a matrix equation of the form Ax=lBx. Orszag discovered his results
because of the special properties of the Chebyshev polynomials to be more accurate than those
obtained previously. Almost all calculations were aimed at finding the least stable eigenvalue
for plane Poiseuille flow and the critical Reynolds number. Ever since then, research has
mainly followed the outlines given by Orszag. Unfortunately, it turned out that spurious
eigenvalues (eigenvalues with large positive imaginary parts shifting wildly as the number of
mesh points is increased) appear even in regimes where the flow is known to be stable [8,9].
Considerable effort has, therefore, been concentrated on developing methods that do not
produce spurious eigenvalues. For instance, using separate expansions for the vorticity and
streamfunction [7] eliminates the spurious modes, though at the expense that the matrices
usually double in size.

McFadden et al. [10] pointed out that in solving Ax=lBx resulting from the spectral–Tau
approach, the matrix B is in general singular and that the occurrence of spurious modes is due
to rows of zeros in B. Gardner et al. [9], McFadden et al. [10] and Lindsay and Ogden [11],
to name a few, developed spectral methods resistant to the generation of spurious eigenvalues.
Recently, Dongarra et al. [12] examined methods employing Chebyshev–Tau representations
involving fourth, second and first derivative operators, respectively, and termed them the D4,
D2 and D methods. In the case of the D2 and D method, the matrix B is inevitably singular
owing to the way the boundary condition rows are added to A ; A is relatively fully occupied,
and the growth of the matrix coefficients is O(K3) and O(K), where K is the spectral order.
Only in the D4 method, is B non-singular, but a growth rate of O(K7) of the matrix coefficients
is likely to lead to round-off errors (especially since large values of K are required in actual
calculations).

2. GALERKIN APPROACH

For the Galerkin approach, the OS eigenvalue problem in (6) and (7) is written in a variational
formulation. The standard procedure [13] to cast Equations (6) and (7) in variational form is
to multiply the equation with a so-called test function c�Cc

�(V)={c�C�(V): supp c is
compact}, and integrate it over the considered domain V, which in this case is the interval
(−1, 1). Let

L2(−1, 1)�
!

f : (−1, 1)�C,
& 1

−1

�f �2 dzB�
"

be the space of complex-valued, square integrable functions on (−1, 1) equipped with the
scalar product

(f, f)0�
& 1

−1

f(z)f(z) dz.
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ORR–SOMMERFELD EQUATION 123

We define the Sobolev space

H0
2(−1, 1)�{f�L2(−1, 1): Daf�L2(−1, 1), Daf(91)=0, a=0, 1, 2},

where Da denotes the weak derivative. For convenience, the arguments of the functions as well
as the domains of the function spaces will be dropped from now on. Multiplying (6) by c( �H0

2

and integration over V yields for the right-hand side

((D2−a2)2f, c)0= ((D2−a2)f, (D2−a2)c( )0= ((D2−a2)f, (D2−a2)c)0,

where we have twice integrated by parts and used (7) to obtain the first equality, so that after
rearranging terms we obtain the variational formulation of the OSE

((D2−a2)f, (D2−a2)c)0+Re(ia(D2U)f, c)0−Re(ia((D2−a2)f)U, c)0

= −lRe(ia(D2−a2)f, c)0 for all c�H0
2. (8)

We define bilinear forms

a: H0
2×H0

2�C,
b: H0

2×H0
2�C,

a(f, c)= left-hand-side of (8),
b(f, c)= −Re(ia(D2−a2)f, c)0,

so that the OS eigenvalue problem is now given in the abstract variational form of

Find f�H0
2(−1, 1), l�C such that a(f, c)=lb(f, c) Öc�H0

2(−1, 1). (9)

Note that the boundary conditions are automatically satisfied. The existence of exact complex
eigenvalues and corresponding (non-zero) eigenfunctions to (9) is well known (for details, see
Hancke [2]).

2.1. Galerkin discretization

To treat (9) numerically, we have to restrict the problem to subspaces VK¦H0
2 (−1, 1), which

are finite-dimensional, dim VK=KB�. In this work, we will adhere to a simple mesh
consisting of only one element V= (−1, 1) (which is identical with the so-called master
element V. = (−1, 1), see Schwab [13]) and achieve convergence of our approximate solution
by increasing the polynomial degree of the approximating functions (instead of refining the
mesh).

Remark 2.1
To treat the flow of several superposed layers of different fluids, each of which has a profile
U(z), we choose the elements of the mesh according to the respective widths of the layers. Each
element can then be mapped onto the master element, where the problem can be solved as
proposed in this article. Finally, the solutions obtained on the master element can be mapped
back to the respective element.
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Definition 2.2
VK�span{Ni}, i=1, . . . ,p−3, where Ni are the so-called internal shape functions, defined by

Ni(z)�
'2i+3

2
& z

−1

& h

−1

Li+1(z) dz dh=
'2i+3

2
& z

−1

(z−h)Li+1(h) dh, (10)

where Li is the ith Legendre polynomial.

A function fK�VK is therefore given by fK(z)=�i=1
K aiNi(z), with ai being the scalar

coefficients. The discrete version of (9) now reads

Find fK�VK, l (K)�C such that a(fK, c)=l (K)b(fK, c) Öc�VK. (11)

Remark 2.3
Usually, the space VK is spanned not only by internal but also by nodal shape functions (for
details see Schwab [13]). In the present case, however, the boundary conditions imposed on the
OSE, f=Df=0, z=91, imply that the set of nodal shape functions is linearly dependent
on the set of internal shape functions, thus accounting for dim VK=p−3.

Denoting (/(z by a prime, we briefly state the following:

Proposition 2.4
The Legendre polynomials have the following properties [14]:

(a) (2i+1)Li=L %i+1−L %i−1, i=1, 2, . . . ,

(b) (Li, Lj)0=
& 1

−1

Li(z)Lj(z) dz=Í
Ã

Ã

Á

Ä

2
2i+1

,

0,

i= j

i" j

,

(c) Li(−1)= (−1)i, Li(1)=1,

(d)
& z

−1

Li+1(h) dh=
1

2(i+1)+1
(Li+2(z)−Li(z)).

We will frequently use the identities of

Corollary 2.5

(a) Ni(z)=
'2i+3

2
�Li+3(z)−Li+1(z)

(2i+3)(2i+5)
−

Li+1(z)−Li−1(z)
(2i+1)(2i+3)

�
,
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(b) DNi(z)�
d
dz

Ni(z)=
1


2(2i+3)
(Li+2(z)−Li(z)),

(c) D2Ni(z)=
'2i+3

2
Li+1(z).

In all cases the results are obtained by straightforward calculation using integration by parts,
Proposition 2.4 and the Leibniz rule.

3. STRUCTURE OF THE DISCRETE PROBLEM

We are now setting up the stiffness matrix A and the mass matrix B. As usual [13],
Aij=a(Nj, Ni) and Bij=b(Nj, Ni). Due to the linearity and symmetry of the scalar product, we
have

a(Nj, Ni)= ((D2−a2)Nj, (D2−a2)Ni)0+Re(iaNjD
2U, Ni)0−Re((D2−a2)NjU, iaNi)0

= (D2Nj, D2Ni)0−2a2(D2Nj, Ni)0+a4(Nj, Ni)0+Re ia(NjD2U, Ni)0

−Re ia(UD2Nj, Ni)0+Re ia3(UNj, Ni)0

=T1ij−2a2T2ij+a4T3ij+Re iaT4ij−Re iaT5ij+Re ia3T6ij, (12)

where

T1ij� (D2Nj, D2Ni)0,
T2ij� (D2Nj, Ni)0,
T3ij� (Nj, Ni)0,

T4ij� (NjD2U, Ni)0,
T5ij� (UD2Nj, Ni)0,
T6ij� (UNj, Ni)0.

Note that by integration by parts (D2Nj, Ni)0= (Nj, D2Ni)0 holds, since Ni, Nj�VK¦H0
2; i.e.

the functions and their derivative vanish at the boundary z=91. We will see that T1, T2, T3

are banded due to the orthogonality of the Legendre polynomials. More precisely, T1 is the
identity, T2 and T3 have bandwidths 3 and 5 respectively, and the bands are not even fully
occupied. Straightforward calculations show that every other diagonal consists of zero entries
(again by orthogonality). Obviously, T1, T2 and T3 are not affected by the mean flow U(z),
which for parallel shear flows of viscous fluids can be at most quadratic in z. The matrices T4,
T5 and T6, however, are affected by the mean flow, but nevertheless the band structure can be
maintained [2], even for a general polynomial flow profile U(z)=�i=0

k aiz i. Setting up the
above matrices involves only basic mathematics: frequent use is made of the symmetry and
linearity of the scalar product as well as of the properties of the Legendre polynomials stated
in Section 2.

To calculate the matrices that are affected by the flow profile U, we need Bonnet’s recurrence
formula [15] for the Legendre polynomials

zLk(z)=
1

2k+1
((k+1)Lk+1(z)+kLk−1(z)) for k=1, 2, . . . (13)
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For plane Poiseuille flow, i.e. U(z)=1−z2, we immediately obtain T4= −2T3, T5=T2−
T5*, with T5ij* � (z2D2Nj, Ni)0 and T6=T3−T6*, with T6ij* �− (z2Nj, Ni)0=T3ij−T6ij* . The
explicit calculations for any matrix entry of A can be found in detail in Appendix B;
setting up the mass matrix B proceeds along the same lines.

According to (12), we have to equip the matrices Ti with multiplicative factors involving
the Reynolds number Re and the wavelength a to set up the stiffness matrix A and arrive
at

A=T1− (2a2+Re ia)T2+ (a4−2Re ia+Re ia3)T3+Re iaT*5 −Re ia3T*6, (14)

where terms have been collected. Similarly, we obtain for the mass matrix B,

B= −Re iaT2+Re iaT3. (15)

As shown in the appendix, we therefore conclude

For plane Poisenille flow, the stiffness matrix A�M(p−3, p−3) and the mass matrix
B�M(p−3, p−3) have bandwidths 7 and 5 respectively, no matter how large the value of
p is. All entries Aij, Bij can be computed explicitly, thereby avoiding quadrature errors.
Such sparse matrices are particularly suited to the calculation of large spectra in hydrody-
namic stability, since memory requirements are proportional to the spectral order and
high spectral orders are necessary to guarantee scale resolution and therefore trustworthy
results.

4. NUMERICAL RESULTS

In this section we present the numerical eigenvalue approximations obtained with the p-
FEM approach. First, the spectrum of plane Poiseuille flow at a Reynolds number Re=
104, which has been studied by several authors [1,12,16], is addressed. Next, we examine the
critical values of l and Re for the classical problem of plane Poiseuille flow and compare
our results in detail with those of previous investigations based on the Chebychev–Tau
spectral approach, in particular with Orszag [1] and Dongarra et al. [12].

We demonstrate p-convergence of the eigenvalues emerging from the discretized prob-
lem to the exact eigenvalues. Then, we turn to higher Reynolds numbers of order 105

and above. Here the conditioning of the discrete problem is essential and therefore in-
vestigated. It appears that the least stable modes can reliably be approximated by the
p-FEM approach provided the polynomial degree is suitably increased with Re. Trustwor-
thy results can only be obtained under the assumption of scale resolution [3], i.e. small
Re/p2.

All calculations are performed for plane Poiseuille flow and are based on 64-bit arith-
metic using standard eigenvalue software (MATLAB V).
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4.1. Numerical solution

We have to solve the generalized eigenvalue problem Ax=lBx, where A, B�M(K, K) have
been computed explicitly in the preceding section (respectively in the appendix), x�RK and
l�C. The eigenvalues l can, for example, be found by using the QZ algorithm, which we shall
now briefly describe.

Given A, B�M(K, K), the QZ algorithm computes matrices Q, Z�orth(K, K) such that
QTAZ=T is upper (quasi-)triangular with diagonal elements tii, and QTBZ=S is upper
triangular with diagonal elements sii. The eigenvalues of Ax=lBx are then given by li= tii/sii,
for i=1, . . . , K, where division makes sense. The algorithm requires roughly 30K3 flops. For
details, see Golub and van Loan [17]. It should be noted that the QZ algorithm can be applied
to any two square (complex) matrices.

We wrote a MATLAB code that generates the matrices A and B for any prescribed
polynomial degree p given the physical setting of plane Poiseuille flow. Using the QZ
algorithm implemented in the MATLAB V version, we were not able to exploit the sparsity of
the matrices, since full matrices are required as input data. In principle, however, the sparsity
of the matrices opens the way to the use of large spectral orders.

4.2. The spectrum for plane Poiseuille flow at Re=104

The spectrum for plane Poiseuille flow, p=500, Re=104 and a=1 obtained from the p-FEM
is shown in Figure 1. We restricted the display to those eigenvalues with lI]−1, which is
common in fluid dynamics; the disturbances corresponding to eigenvalues with large negative
imaginary parts are of little practical interest since they decay quickly in time.

Focusing on the least stable modes (i.e. those with largest imaginary parts), we investigated
possible inaccuracies resulting from the growing size of the problem and compared the spectra
obtained with p=200 and p=500 for the plane Poiseuille flow. They are shown in Figure 2(a)

Figure 1. Spectrum for plane Poiseuille flow at Re=104, a=1, p=500.
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and (b). Irrespective of p no changes of position in the branches could be detected. Only a
slight shifting of positions occurs around the branching point, but this region is known to be
very sensitive to changes in Re and p, as reported by e.g. Orszag [1] and Dongarra et al. [12].
We conclude that we do not have to cope with major numerical inaccuracies caused by the
growing size of the problem as far as the least stable modes at a moderate Reynolds number
are concerned.

4.3. The critical 6alues of l and Re for plane Poiseuille flow

To put the p-FEM for the OSE to a first test, we calculated the critical Reynolds number Recrit

(given a=1.026) and the critical eigenvalue lcrit for plane Poiseuille flow (at Re=104, a=1).
The results are presented in Tables I and II.

Concerning Table II, we remark that Orszag used only even modes in his calculation of lcrit

and that with the D4 method, Dongarra et al. solve Ax=lBx with a non-singular B and a
relatively fully occupied A. Two spurious modes occur, questioning the belief that such modes
are related only to a singular B, but rather to the Tau discertization technique. Moreover, the
values obtained for lcrit diverge from ( � ) with increasing spectral order K.

Figure 2. Spectrum for plane Poiseuille flow at Re=104, a=1, p=200 (a) and p=500 (b).

Table I. Recrit for plane Poiseuille flow

Wavenumber a Recrit

1.026 5780Thomas
1.0205690.00001 5772.22Orszag

57671.02Nachtsheima

1.025 5750Grosch and Salwena

Present work 5775.991.026

a Results reported by Orszag [1].
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Table II. Least stable mode for plane Poiseuille flow

lcrit Method

FDMThomas
+0.0035925i 50 Grid points0.2375006
+0.0037312i 100 Grid points0.2375243

Orszag Chebyshev–Tau
+0.00373967i ( � ) K=280.23752649

D4 methodDongarra et al.
+0.00373980i K=500.23752708

Present work p-FEM
+3.739669595990969e−03i2.375264900288206e−01 p=50

2.375264888204705e−01 +3.739670622980277e−03i p=100
2.375264888204710e−01 +3.739670622980398e−03i p=200

+3.739670622979626e−03i2.375264888204704e−01 p=300
2.375264888204682e−01 +3.739670622979878e−03i p=400

+3.739670622979582e−03i2.375264888204705e−01 p=500

4.4. Least stable mode for plane Poiseuille flow

Orszag [1] lists the 32 least stable modes obtained with the Spectral–Tau method and a
spectral order K5100. With the p-FEM, excellent agreement on all 32 modes is achieved. We
have not found a single spurious mode. Dongarra et al. [12] found an extra eigenvalue between
positions 17 and 18 of Orszag’s list; the p-FEM confirmed this result. The list of the least 33
stable eigenvalues is given in Appendix A. We now demonstrate the p-convergence behaviour
of the least stable mode for plane Poiseuille flow at a=1, Re=104 (Table III). The
corresponding eigenfunction, whose regularity strongly influences the convergence of the
eigenvalue, is shown in Figure 3. This plot supports our statement that the eigenvalue is
converged. For a detailed convergence analysis of the five least stable modes see Hancke [2].

4.5. Least stable modes at Re=105 to Re=109

Since for large Reynolds number only few data are available to compare our results with, we
will restrict our attention to results concerning the least stable mode, for which at least some
calculations have been performed. We will compare our results with the ones obtained by
Dongarra et al. [12] and Abdullah and Lindsay [18].

Table III. Convergence of the least stable mode

2.375264888204705e−01+3.739670622980277e−03ip=100
2.375264888204710e−01+3.739670622980398e−03ip=200
2.375264888204704e−01+3.739670622979626e−03ip=300

p=400 2.375264888204682e−01+3.739670622979878e−03i
2.375264888204682e−01+3.739670622979878e−03ip=500
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Figure 3. Eigenfunction to the least stable mode.

For Reynolds numbers larger than Re=105, we tested our code against the results obtained
by Abdullah and Lindsay [18]. Table IV gives the numerical results for the imaginary part of
the critical, least stable eigenvalue for plane Poiseuille flow and a=1. Only the significant
figures are shown. The polynomial degree is kept fixed at p=600. Note that this table is not
to be understood in the sense that plane Poiseuille flow is stable at such high Reynolds
numbers: for large values of Re the transition from laminar flow to turbulent flow is shifted
to higher wavenumbers than a=1. Unfortunately, no experimental data on Reynolds number/
wavenumber combinations that yield the expected unstable disturbances were available to us
to put the p-FEM code to a further test.

For plane Poiseuille flow, a=1 and Re=105, Dongarra et al. present the eigenvalues with
the largest imaginary parts for the six odd and even eigenfunctions obtained from the D2
method using 400 polynomials (Table V). We performed respective calculations and present
Table VI for comparison, where we limited the display to the significant figures.

Table IV. Least stable mode at various Reynolds numbers, obtained by
Abdullah and Lindsay [18], and with the p-FEM

Present workRe pAbdullah and Lindsay

104 +0.00373967i 600+0.003739i
600−0.01116257i−0.011164i105

600106 −0.003534i −0.00353380i
107 −0.001118i −0.00111786i 600

600−0.00035353i−0.000354i108

109 −0.000112i −0.00012091i 600
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Table V. Least stable modes at Re=105, a=1 obtained by Dongarra et al.
[12]

Odd 9.888191058e−01−1.116257893e−02i
9.798738045e−01−2.008374163e−02i
9.709280339e−01−2.900433538e−02i
1.373944878e−01−2.956356969e−02i
9.619817790e−01−3.792441466e−02i
9.530350180e−01−4.684401422e−02i

9.888195933e−01−1.116360699e−02iEven
1.459247829e−01−1.504203085e−02i
9.798751271e−01−2.008635538e−02i
9.709305305e−01−2.900898101e−02i
1.982003566e−01−3.733100660e−02i
9.619857994e−01−3.793148490e−02i

Table VI. Least stable modes at Re=105, a=1 obtained with the p-FEM

9.888191058e−01−1.116257892e−02iOdd
9.798738045e−01−2.008374162e−02i
9.709280338e−01−2.900433537e−02i
1.373944863e−01−2.956360012e−02i
9.619817790e−01−3.792441474e−02i
9.530350177e−01−4.684401411e−02i

9.888195933e−01−1.116360699e−02iEven
1.459247885e−01−1.504204266e−02i
9.798751270e−01−2.008635541e−02i
9.709305303e−01−2.900898109e−02i
1.982003544e−01−3.733101358e−02i
9.619857991e−01−3.793148468e−02i

The results presented in this section show clearly that the p-FEM approach is a viable
alternative to the existing spectral methods commonly used to tackle hydrodynamic instability
problems.

4.6. Condition of A and B

The conditioning of the discrete problem becomes essential if a high polynomial degree p is
required to achieve convergence. Numerically, the conditioning of A and B has been investi-
gated by performing calculations with up to p=500 for various prescribed Reynolds numbers
using MATLAB V. A theoretical analysis of the upper bounds of the condition of A and B can
be found in Hancke [2]. For the definition of the condition of a matrix we refer to Golub and
van Loan [17]. Figure 4(a) shows that the condition number of A, cond(A), remains at a
constant value in all considered cases if calculated for a ‘sufficiently large’ p, which for
Reynolds numbers up to 270000 was found to be p=100. From this we derive that the
condition of A depends linearly on the Reynolds number if p]100. Figure 4(b) plots the
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Figure 4. cond(A) as a funciton of the spectral order p for various Reynolds numbers (a) and cond(A)
as a function of the Reynolds number (b).

condition of A as a function of Re for p=500. The condition of B is found to be independent
of the Reynolds number: theoretical investigations [2] imply that cond(B)5Cp4, where C=40
has been found from numerical experiments. From this, we see that it is necessary to use higher
precision if p becomes large.

5. CONCLUSION

In the present work, we proposed a spectral discretization using a Galerkin method starting
form a variational formulation of the OSE. We adopted integrated Legendre polynomials as
basis functions and wrote a MATAB code that generates the sparse matrices A and B for any
prescribed polynomial of degree p, where p is the spectral order. The boundary conditions
imposed for strictly parallel flow between fixed plates are satisfied exactly for any p by the
specific choice of the shape functions. Due to the orthogonality property of the Legendre
polynomials on the interval (−1, 1), sparse matrices are obtained of which the entries are
explicitly computable. Memory requirements are thus proportional to p and quadrature errors
are avoided. For the plane Poiseuille flow profile U(z)=1−z2, the matrices A and B have a
bandwidth of 7 and 5 respectively, independent of p. The matrices are non-singular and
relatively well conditioned. We found no spurious eigenvalues. The numerical results existing
for the plane Poiseuille flow profile at various Reynolds numbers were duplicated in all cases,
while all calculations were performed by using standard eigenvalue software (MATLAB V)
and based on 64-bit arithmetic. Using MATLAB V, we could not exploit the sparsity of the
matrices since the QZ algorithm in MATLAB requires full matrices as input data. To take
advantage of the sparisty of A and B, Arnoldi or unsymmetric Lanczos methods (see Golub
and van Loan [17] and the references therein) should be employed in the future.
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APPENDIX A. LEAST STABLE MODES FOR PLANE POISEUILLE FLOW

Table VII lists the 33 least stable modes for plane Poiseuille flow at Re=104, a=1. Between
position 17 and 18 of Orszag’s list, we confirmed the occurrence of an extra eigenvalue—now
position 18—as reported recently by Dongarra et al. [12].

Table VII. The 33 least stable modes determined by the p-FEM for plane
Poiseuille flow, a=1, Re=104, p=500

2.375264888204705e−01+3.739670622979582e−03i1
9.646309154506005e−01−3.516727763102714e−02i2
9.646425100392918e−01−3.518658379244360e−02i3

4 2.772043438088034e−01−5.089872725696934e−02i
5 9.363165358813165e−01−6.320149583992261e−02i

9.363517811647321e−01−6.325156907426489e−02i6
7 9.079830546294746e−01−9.122273543365587e−02i

9.080563344920409e−01−9.131286177906131e−02i8
9 8.796272922071848e−01−1.192328526196531e−01i

10 8.797556958148425e−01−1.193707310084970e−01i
3.491068201236155e−01−1.245019775533640e−01i11
4.163510155757767e−01−1.382265253008422e−01i12
8.512458401250318e−01−1.472339290761887e−01i13
8.514493818788961e−01−1.474256007529050e−01i14

15 8.228350406919021e−01−1.752286786585769e−01i
16 8.231369612637365e−01−1.754780735545809e−01i
17 1.900592493682396e−01−1.828219254122324e−01i

2.127257823532061e−01−1.993606947537152e−01i18

7.943883849501244e−01−2.032206650325090e−01i19
20 7.948183878533778e−01−2.035291440331918e−01i

5.320452087705384e−01−2.064652191027814e−01i21
4.749011869505417e−01−2.087312200483873e−01i22
7.658768104861932e−01−2.311859867400237e−01i23

24 7.664940761566144e−01−2.315850738517848e−01i
3.684984783489053e−01−2.388248317189281e−01i25

26 7.374157633012601e−01−2.587170766094873e−01i
7.381150139815603e−01−2.596918833434765e−01i27

28 6.367193722661181e−01−2.598857149326573e−01i
29 3.839876109046220e−01−2.651064996075110e−01i
30 5.872129330137613e−01−2.671617095172383e−01i
31 7.123158607293292e−01−2.855147340989841e−01i

5.129162044954282e−01−2.866250415845459e−01i32
7.088746522936619e−01−2.876553939185146e−01i33
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APPENDIX B. CALCULATION OF THE MATRIX ENTRIES Aij

B.1. Calculation of T1ij� (D2Nj, D2Ni)0 for 15 i, j5p−3

By Corollary 2.5 and the orthogonality we have

(D2Nj, D2Ni)0=

2j+3
2i+3

2
2

2j+3
dij=

!1, i= j
0, i" j

,

thus T1 is the identity matrix.

B.2. Calculation of T2ij� (D2Nj, Ni)0 for 15 i, j5p−3

Using Proposition 2.4 and Corollary 2.5, we obtain for the non-zero entries

T*2ij=Í
Ã

Ã

Ã

Ã

Á

Ä

i= j−2:

i= j :

i= j+2:

1


2j−1(2j+1)
2j+3
,

−
1

2j+3
� 1

2j+1
+

1
2j+5

�
,

1


2j+3(2j+5)
2j+7
,

since

(D2Nj, Ni)0=

2j+3
2i+3

2
& 1

−1

�Lj+1(Li+3−Li+1)
(2i+3)(2i+5)

−
Lj+1(Li+1−Li−1)

(2i+1)(2i+3)
�

dz.

B.3. Calculation of T3ij� (Nj, Ni)0 for 15 i, j5p−3

Calculations do not differ from the ones carried out for T1, T2. Since T3 is symmetric, we will
only display the diagonal and upper diagonal (non-zero) entries. We have

(Nj, Ni)0=
'2j+3

2
'2i+3

2
& 1

−1

IJ dz,

where I�	z
−1 (z−h)Li+1(h) dh and J�	z

−1 (z−h)Lj+1(h) dh. Obviously,& 1

−1

IJ dz=
& 1

−1

I1J1 dz−
& 1

−1

I1J2 dz−
& 1

−1

I2J1 dz+
& 1

−1

I2J2 dz, (16)

where

I1(z)=
Li+3(z)−Li+1(z)

(2i+3)(2i+5)
,

J1(z)=
Lj+3(z)−Lj+1(z)

(2j+3)(2j+5)
,

I2(z)=
Li+1(z)−Li−1(z)

(2i+1)(2i+3)
,

J2(z)=
Lj+1(z)−Lj−1(z)

(2j+1)(2j+3)
.

By Proposition 2.4(b), each integral on the right-hand side of (16) can be simplified consider-
ably by straightforward calculations. Putting the various pieces together and finally multiply-
ing with the so far omitted factor (
2i+3
2j+3)/2 yields for the diagonal and upper
diagonal entries
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T3ij=Í
Ã

Ã

Ã

Ã

Ã

Ã

Á

Ä

i= j−4:

i= j−2:

i= j :

1


2j−5(2j−3)(2j−1)(2j+1)
2j+3
,

−1


2j−1(2j+1)
2j+3� 1
(2j+3)(2j+5)

+
1

(2j+1)(2j+3)
+

1
(2j−1)(2j+1)

+
1

(2j−1)(2j−3)
�

,

1
2j+3

� 1
(2j+5)2(2j+7)

+
1

(2j+3)(2j+5)2

+
2

(2j+1)(2j+3)(2j+5)
+

1
(2j+1)2(2j+3)

+
1

(2j+1)2(2j−1)
�

.

B.4. Calculation of T4ij� (NjD2U, Ni)0 for 15 i, j5p−3

For plane Poiseuille flow, where U(z)=1−z2, we obtain T4= −2T3.

B.5. Calculation of T5ij� (UD2Nj, Ni)0 for 15 i, j5p−3

Note that (z2Lj, Lk)0= (zLj, zLk)0 holds because of the symmetry of the scalar product and
since z is real. Thus, we can evaluate these expressions using Bonnet’s formula. For U(z)=
1−z2 we arrive at (UD2Nj, Ni)0= (D2Nj, Ni)0− (z2D2Nj, Ni)0=T2ij−T*5ij, so that T5 is com-
posed of the already computed matrix T2 and the matrix T*5 defined in Section 3. It should be
mentioned that T*5 is not symmetric. We present merely the results

i= j−4:
j( j+1)


2j−5(2j−3)(2j−1)(2j+1)
2j+3
,

i= j−2:
1


2j−1(2j+1)
2j+3

� ( j+2)2

(2j+3)(2j+5)

+
( j+1)2

(2j+1)(2j+3)
−

j( j+1)
(2j−1)(2j+1)

−
j( j+1)

(2j−3)(2j−1)
�

,

i= j :
1

2j+3
� ( j+2)( j+3)

(2j+5)2(2j+7)
−

( j+2)2

(2j+3)(2j+5)2

T*5ij= −
( j+1)2

(2j+1)(2j+3)(2j+5)
−

( j+2)2

(2j+1)(2j+3)(2j+5)
+

j( j+1)
(2j+1)2(2j−1)

−
( j+1)2

(2j+1)2(2j+3)
�

,

i= j+2:
1


2j+3(2j+5)
2j+7

� ( j+4)2

(2j+7)(2j+9)

+
( j+3)2

(2j+5)(2j+7)
−

( j+2)( j+3)
(2j+3)(2j+5)

−
( j+2)( j+3)

(2j+1)(2j+3)
�

,

i= j+4:
( j+2)( j+3)


2j+3(2j+5)(2j+7)(2j+9)
2j+11
.

Á
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ä
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B.6. Calculation of T6ij� (UNj, Ni)0 for 15 i, j5p−3

For plane Poiseuille flow, T6ij= (Nj, Ni)0− (z2Nj, Ni)0=T3ij−T*6ij, where T*6 is a symmetric
matrix whose diagonal and upper diagonal nonzero entries are given by

T*6ij=

i= j−6:
( j−2)( j−1)


2j−9(2j−7)(2j−5)(2j−3)(2j−1)(2j+1)
2j+3
,

i= j−4:
1


2j−5(2j−3)(2j−1)(2j+1)
2j+3

�
−

j( j+1)
(2j+3)(2j+5)

−
j( j+1)

(2j+1)(2j+3)

+
j 2

(2j−1)(2j+1)
+

( j−1)2

(2j−3)(2j−1)
−

( j−2)( j−1)
(2j−5)(2j−3)

−
( j−2)( j−1)

(2j−7)(2j−5)
�

,

i= j−2:
1


2j−1(2j+1)
2j+3

� ( j+2)( j+3)
(2j+3)(2j+5)2(2j+7)

−
( j+2)2

(2j+3)2(2j+5)2

−
j 2

(2j−1)2(2j+1)2−
( j+1)2

(2j+1)2(2j+3)2−
( j+2)2

(2j+1)(2j+3)2(2j+5)

+
2( j+1)j

(2j−1)(2j+1)2(2j+3)
+

j( j+1)
(2j−1)(2j+1)(2j+3)(2j+5)

−
( j+1)2

(2j+1)(2j+3)2(2j+5)
−

( j−1)2

(2j−3)(2j−1)2(2j+1)

+
j( j+1)

(2j−3)(2j−1)(2j+3)(2j+5)
+

j( j+1)
(2j−3)(2j−1)(2j+3)(2j+1)

−
j 2

(2j−3)(2j−1)2(2j+1)
−

( j−1)2

(2j−1)2(2j+1)2+
( j−2)( j−1)

(2j−5)(2j−3)2(2j−1)
�

,

i= j :
1

2j+3
� ( j+4)2

(2j+5)2(2j+7)2(2j+9)
+

( j+3)2

(2j+5)3(2j+7)2−
2( j+3)( j+2)

(2j+3)(2j+5)3(2j+7)

−
2( j+3)( j+2)

(2j+1)(2j+3)(2j+5)2(2j+7)
+

( j+2)2

(2j+3)2(2j+5)3+
( j+1)2

(2j+1)(2j+3)2(2j+5)2

+
2( j+2)2

(2j+1)(2j+3)2(2j+5)2+
2( j+1)2

(2j+1)2(2j+3)2(2j+5)2−
2j( j+1)

(2j−1)(2j+1)2(2j+3)(2j+5)

+
( j+2)2

(2j+1)2(2j+3)2(2j+5)
+

( j+1)2

(2j+1)3(2j+3)2−
2j( j+1)

(2j−1)(2j+1)3(2j+3)

+
j 2

(2j−1)(2j+1)3+
( j−1)2

(2j−3)(2j−1)2(2j+1)2

�
.

Á
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ä
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